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1 Introduction

Taylor's formula shows how to approximate a certain class of functions by

polynomials. The approximations have two nice properties. They are ar-

bitrarily good in some neighborhood whenever the function is analytic and

they are easy to compute. Our goal is to give an efficient algorithm to ap-

proximate a neighborhood of the configuration space of a dynamical system

by a nilpotent, explicitly integrable dynamical system. For a class of dynam-

ical systems analogous to the analytic functions, this approximation will be

arbitrarily good in some fixed neighborhood and easy to compute.

In [2], we give an algorithm which given a rank r yields two vector fields

E1 and E2 on R N with the properties

1. The vector fields E1 and E2 generate a Lie algebra isomorphic to the

free, nilpotent Lie algebra on 2 generators of rank r. Let n denote the

dimension of this Lie algebra.

2. If El, for i -- 1,... ,n denotes the vector fields corresponding to the

Hall basis of a free nilpotent Lie algebra, i.e. E3 = [Ea, E1], E4 =

[E3, El], Es -- [E3, F-a], etc., then
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3. The trajectory t --* y(t) satisfying

= ulCOE1Cy(0)+ u2ct)r cyct)), y(0) = y0 e R"

can be written explicitly in terms of quadratures involving the func-

tions t --* u(t).

Let £ denote the configuration space for this system. We sometimes refer

to this system as the model system.

Suppose we are given an arbitrary system of the form

where z(t) E R k, F1 and F2 are vector fields on R k, and t --* ui(t) are given

measurable controls. Let _" denote the configuration space for this system.

In order to approximate this control system to ruth-order, we compute the

iterated Lie brackets Fi corresponding to the Hall basis El, obtained by

substituting F1 and F2 for E1 and E2.
Our main construction is an approximating map A which maps the con-

figuration space _: of the nilpotent model to the space _" with the property

that the images under _ of trajectories in _ with measurable, bounded con-

trols stay close to their counterparts in _', provided that the Fi satisfy a kind

of analyticity. The exact analyticity we require is described at the beginning

of_ 3.

The map A turnsout tobe a polynomialmap from R" toR k. Itdepends

only upon the vectorfieldsEi and Fi and not upon the particularcontrols

uj(t}.For thisreason,itcan be precomputed and usedto compute efficiently

a tubularneighborhood of trajectoriesaround a given referencetrajectory

Nilpotent Lie algebras have been an important tool in control systems

beginning with the work of Krener and Ilermes, see [7], [4], [5], and [1]. The

point of view of these papers was to use nilpotent Lie algebras in order to
obtain theoretical results about properties of control systems. The point

of view here is to focus on the some of the computational aspects of using

nilpotent normal forms. In particular, we give an efficient algorithm to

compute the map A mapping trajectories of a model nilpotent system to

a given system and an algorithm to integrate a tubular neighborhood of

trajectories around a given fixed reference trajectory.

Section 2 defines the approximating map A. Section 3 defines the an-

alyticity required for our algorithm. Sections 4 and 5 state and prove the
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maintheorem.SectionOshowshowto apply the maintheoremto integrate
simultaneouslymanytrajectoriesarounda given fixed reference trajectory.

The final section contains some examples. The appendix contains the Math-

ematica code we used to compute the examples.

For unexplained terminology involving Lie algebras and Hall bases, see

[3] and [6].

2 An approximating map

We begin with an informal description of the main idea. The vector fields Ei

define a map _E: R" --* R n by (sl,...,s,_) --* exp(E_'=_ siEi). This takes

the tangent space T(R '_) and flows it out into R '_. _F:R '_ --* ti k is defined

similarly, by exponentiating _ siFi. The lambda map is then _fo_ 1. The

map _g is always invertible, so ,_ is always defined. But since _F may be

non-invertible, for instance, if k < n, then ,_ may also be non-invertible.

Computing _F is usually just as hard as solving for an arbitrary trajec-

tory, so we take approximations of Ce instead. Since our approximation is

supposed to be good to order m, we use m applications of a Picard iteration

scheme. To 0 th order, z ° is 0. Substituting this into iX(r) = _ siFi(0) we

get the first order approximation z_(r) = r E siFi. Next, we would like to

solve i2(r) = _ siF_(xl(r)). This is not usually solvable explicitly, but as

we're only interested in a second order approximation to the solution, we

can take a first order power series expansion in the flow parameter r. Thus,

we solve i2(r) = ao(t) + al(t)r. We repeat this process and, eventually, get

z_(1) to agree with 6f to order m.

More precisely, to state and prove our main theorem requires the follow-

ing four definitions.

Definition 1 For fixed Sl , . . . , sn, write x(r; 0 , . . . , s, ) for the solution z(r)

of i(r) = _, siF/(x(r)), z(0) = O, and define operators _, _J by

=
i

/or= 7"J( Z2s,
i

where T j represents the jth-order Tayler approximation with respect to the

¢ariable r.
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Definition 2 The trajectories zJ (r; sl,... ,sn) are defined indnctivell:

s:,...,s,) = o, ,s,) = s,)).

Definition 3 Tire map 4'_(Sl, ...,sn):R n _ Rnis defined as the time one

flow of the trajectory z m, namely zm(1; sl,..., sn).

Definition 4 73te ruth-order approzimation to the )_ map, Am, is defined by

Am = o )E 1.

3 The generalized Baker-Campbell-Hausdorff formula

Proving convergence of the algorithm, requires generalizing the Baker-Camp-

bell-Hausdorff formula (BCH). The BCH formula writes the product of two

exponentials (the composition of two flows) as the exponential of a series

in the brackets (a constant flow involving the higher order brackets of the

vector fields). A trajectory in a control system is a limit of compositions of

piecewise constant flows, and we can use the BCH to derive a constant flow

involving a series in the higher brackets which arrives at the same point. At

the formal level and for systems whose vector fields generate nilpotent Lie

algebras, BCH holds exactly, providing computable "geodesic normal coor-

dinates". To approximate trajectories in other control systems, we must

assume that BCIt converges for them as well. We give an example later

where BCH does not converge, but the vector fields are not analytic. To our

knowledge, no general criteria are known which imply convergence of BCH.

We now introduce the analyticity requirement we need in order to prove

convergence of our algorithm. We say that two vector fields are BCH analytic

in case there is a 5, with 0 < 6 < l, such that any Lie algebra elements X1

and X2 in the Lie algebra generated by the Fi of the form IX1] < IX2t </_,

satisfy the following estimate

leX2eX, _ e_, (x, ,x,)+...+¢m(x, ,x,) I < am IXl IIX21 , (I)

where ci(X1, X2) are all the terms of weight i in the BCH formal expan-

sion and c_ is a positive constant depending on the Lie algebra. The term

a'nlX 1IIX21TMcomes from combining the fact that a converging series is geo-

metric in a smaller ball, and hence a bound on the next term is comparable

to the error, and the fact that every non-vanishing Lie element of weight

> m has at least one X1 (the smaller) factor in every term.
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Varadarajan [8] shows that the estimate [[X,Y][ < MJXJiY[, for all X, Y

in the Lie algebra generated by F1 and F2, implies Condition (1). Note that

this estimate holds if FI and F2 generate a finite dimensional Lie algebra.

Lemma 5 Given a positive integer m, let n be the dimension of the free

nilpotent Lie algebra of rank m on two generators. Given u (t) and [0,T]
as above, then there exist constants sl,...,s, slch thai given vedor fields

F1 and F2 as above, and the higher brackets F3,..., Fn corresponding to the

Hall basis elements, then the trajectories

= ux(t)tl(x) + u2(t)F2(x), x(0) = 0

and

_(t) = slFx(z) +... + snF,(z),

satisfy Ix(T)- y(T)I < (aT) '_+_.

y(0)=0

Note that the si depend only on the ui and not on the/q. The case Ul (t) "-

US(i) = T = 1 is the standard BCH formula.

Proof. Let vl(t) and v2(t) be step-function approximations to ul(t) and

us(t), respectively, chosen well enough so that the trajectory with the vi(t)

as controls stays t "+1 close to z(t) over the interval [0, T]. Suppose that the

vi(t) are constant except at the times (tl,..., iN). To start, consider the flow

zl(t) with controls vi(t) on the time interval [0,tl]. Trivially, there is a flow

w 1 (t) with constant coefficients E_'=I s_ Fi such that w 1(tl) = z I (tl), namely

s_ = vi. The flow z2(t) is the flow w_(t) for t E [0,tl] fonowed by the flow

with controls vi(t) for t E (tl,t2]. By the BCH convergence condition (1),

there is a flow w2(t) with different constant coefficients _=_ s_Fi such that

[w_(tl)-Z2(h)l < (t2-h)(aT)'. At stage j, the error is < (tj+l-tj)(aT) "_,

and so the total error is < (aT) _ Y':_(tj+l - tj) = (aT) '_+1 as desired. II

Since the BCH formula holds exactly in the configuration space E, the

trajectory z(t) is exactly _(y(t)) in this case.

4 The Picard-Taylor Method

Recall that the map &_ is the easily computed Picard-Taylor approximation

of the exponential map &F(S) = _ siFi. In this section, we prove that the

error introduced by using _ is O(sm+l), just as in Taylor's theorem.

The convergence of a Picard iteration scheme depends on a bound B and

a Lipschitz constant L for the vector fields: IFi(p)l < B and IFi(p)-Fi(q)l <
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LIP - ql for p and q in some ball about the origin. The choiceof ball

determinesB, L and a fixedtime T _,such thatthe approximate trajectories

do not leavethe ballwhere theseestimateshold.

Lemma 6 Given Fi as above, there is a constant 62 > 0 and a positive

constantC s_ch thatI(_ - _S)(8)l < Clsl_'+1whenever Isl< 62.

Proof. Let z°(r; sl,..., s,_)) = 0 and zJ+l(r;sl,...,8,)) = _(zJ). Exam-

ine the convergenceof zql;sl,..., 8_) to #_.(s) = _xp(E, s_Y,)as j -. oo.
Assume, as an induction hypothesis, that _(r;s) and ._(r;s)are two tra-

jectories which are close in the sense that Iz_(r; s)- d(r; s)[ < c(,I,I) j for
r E [0, 1]. Then

I¢(_i(,;s))- _(g(,;s))! _< fo"I_si(FiCz_Cr;s))- FiCz_(r;s)))]dr
i

__ c(r[sDJ+lL/(j + 1),

and so there is some fixed constant C such that

]ZJ(1; S) -- (]DF(B)[ __ CIBI s+l,

as desired. In particular, we have

Iz_'Cl,s)- @FCs)l _ Clslj+_.

It remainsto estimateI_+_(r; s) - zi+_(r;s)l. Let

I_°(,;,)- z°(,;dl = o, _S+lC,;s)= _J(_(,;_)).

Assuming that lzJ(r; s) - z_(r; s)l < c(,Isl) j+_, we estimate

I_S+_(,;,)- zS+X(,;s)l = l_JC_(,;s))- _(z_(,;_))l
< I_,(_(,; s)) - _s(_(,; s))l

+lSJ(z j (r; s)) -- _(zJ(r; _))1

< L" ICJ(_ s,F,(g(,; _)) - _rJ_ s,F_(_J(,;,)))ld,
i i

+ fo" I_rJ(_ siFi(zi(r; s)) - _ siFi(zJ(r; s)))l d,
i i

Z_< I_#(_ siFi(_i(r;s)) - _ sdF_(z'i(r;s)))[ dr
i i

_- fOr '_i sird+l[dr

< C(rlsl) i+2.
- j+2



In particular, we have

]x_(1, s) - z_n(1, s)J <_ CJsJ j+l.

Since ¢_(s) = x'_(l; s), the lemma follows.

5 The main theorem

In this section, we combine the lemmas of the two previous sections to prove

that the easily computed approximating map ,V n maps trajectories of the

explicitly integrable system _ to trajectories of the arbitrary system _ with

error O(s 'n+l).

Theorem 7 . Given a positive constant M and 6, a positive integer m,

and a positive time T, there exists a positive constant C such that, given

measurable controls ul(t) and uz(t) satishing Im(t)l < M for all t • [0, T],

vector fields Fl and F2 satisfying the BCH analyticity condition (1), and

solutions x(t) and y(t) 4

_(t) = ul(t)Fl(x(t)) + u_(t)Fz(x(t)), z(O) = 0

y(t) = ul(t)El(y(t)) + ua(t)E2(y(t)), y(O) = O,t • [0,T],

then IA'_(y(t)) - x(t)l < (Ct) "+_ fort • [0,T].

Proof. It is sufficient to show that the estimate holds at time T. Applying

Lemma 5 twice, once to the system E and once to the system _" shows that

Ix(T) - _(y(T))I < (aT) 'n+l.

Also, we know from Lemma 6 that

Ix'0; s) - x(]; s)l _<Clslm+'.

Since 3"_(y(T)) = z'_(1; s) and Isl < constant. T, the theorem follows. II

6 Simultaneous Integration of Trajectories

In this section, we describe an algorithm to integrate simultaneously a neigh-

borhood of trajectories around a given fixed trajectory. Fix controls ul and

u2 and an initial condition x° • _', and let z(t) denote the corresponding

trajectory of the system £. We give an algorithm yielding p trajectories in

a tubular neighborhood around the fixed reference trajectory x(t).



Step 1. Solve the equation A(y) = x° for y. Let y0 E _" denote the root.

Step 2. For points Iii .-., yp in a neighborhood of y0, compute the trajec-

tory yJ(t) satisfying

_/(t) = Ul(I)E1 "k u2(t)E2, y(0) = yJ.

Step 3. For each point yJ(t) along the trajectory, compute the correspond-

ing point _'*(yJ(/)), for j = l,..., p.

The following theorem follows immediately from Theorem 7.

Theorem 8 For points yi su._icientl[ close to yO and small enough time

f, the trajectories Am(y/(t)) all lie nrithin a fixed tubular neighborhood of

the reference trajectory z(t). These trajectories can be computed by simply

evaluating the map 2ira, which can be precomputed, at different points.

7 Examples

We begin by showing why we require a condition such as BCIt analyticity

for the vector fields F/.

Let
0 0 0

x=m, Y-0zl Oz2

where ¢(zl,z2) is identically 1 if [zl - z2[ > 1/4, and it is smooth and

between 0 and 1 elsewhere, positive away from the diagonal, and vanishing

to infinite order on the diagonal. Now the z3 coordinate ofexp(aY)oexp(aX)

is negative for all a > 0. But all brackets of X and Y vanish on the diagonal.

Therefore, no formula of the form exp(aX)oexp(aY) "" exp(X+Yq- brackets
in X and Y can be valid.

Figures 1 and 2 contain the Mathematica code we used to test the al-

gorithm. Figure 3 contains the vector fields Ei and _ and the _ra map.

Note that the map Ira is a polynomial map. Figure 4 contains the result

of flowing along the explicitly integrable flow in the t: space, applying the

map _'_, and comparing the result to flowing in the _" space using a Runge
Kutta flow.



Brac [v_, e_] : -Block [{i, j}, Table [Sum[, [[i] ] D [w [ [j ] ],• [i] ]

-w[[$]] D[v[[j]],x[i]] ,{i,Length[v]}] , {j , Length [v] }] ]

Flov[p_,v_,{rt_,rO_,rl_}] := Block[{xt,vl ,xl ,i,j ,n},

n-Length [p] ;

vl=v;

xt _p;
vl [E133--[[1]] ;
For [i=1, i<n, i++,

rt[[i]] = Integrate[vl[[i]],rt]_p[[i]] ;
vl [[i+1]] - e[[i+l]]/.Table[x _]->xt [[j]], {j, 1, i}]

];
xt [ [n]] - Int egr at e [v I [ In] ], rt] +p [ In] ] ;
(rt/. {rt->r 1)) -(rt/. (rt->rO})

]

Flov [p_, v_, {rt_ ,rl_}] : -Flow [p, v, (rt, O,rl)]

Flow [p_, v_, {rt _)] :-Flow [p, v, {rt, O, I)]

Flow [p_, v_] :"Flow _,,, {rt, 0,1 }3

Figure 1: Mathematica code to compute brackets and integrable flows.
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Picard[f_,m_] :-Block[{a, i, j ,r,n},

n-Len_h[f] ; (* n - dimension *)

a-f/.Table[x[i]-)O,{i,n}]; (* substitue x-O *)

For[j'l,j<_,j++, (* Loop through • times... *)

a-Integrate [a,r] ;

a=f/.Table[x[i]->a[[i]] ,{i,n}] ; (* substitue *)

(* approximate by something integrable *)

(* at increasing accuracy *)

a-Table [|ormal [Series [a [ Jill, _r, O, j-l}] ], {i, n}]

];

Integrate[a,{r,O,l}] (* Get the final answer *)

LaJbda[e_, f_ ,n_,n_] : -Block [{i, phiF, t, phiE,phiEInv},

(* e, f ere functions whose values ere vector fields *)

(* n is the number of vf's, • is the de_ree of approx. *)

(* Get the F floe by Picard iteration *)

phiF-Picard [Su_[t [i]f [i_, {i ,n}] ,nt] ;

(* Get the E floe by symbolic integration *)

phiE-Floe [Table [0, (i, n}], Sum[t [i] • [i], {i,n}] ] ;

(* Invert the E floe symbolically *)

phiEInv-Solve [Table [b Ill -=phiE [ Ill ], (i, n}],

Table It [i], {i, n}] ] [ [1] ] ;

(* Form the composition *)

phiF/, phiElnv

Figure 2: Mathematica code to compute the map 2m.
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• [13-(1,o,o)
• [23=t:o,1,-z [13)
• [33-Brae [e [2], • [13 ]

[13-(si_[x [333,0,• [23Cos[z [333}
_ [23=(O,Coe[x[333 ,z [13s_,,l:z[3]])

[3] =Brac[_[2] ,_ [1]]

L3=Laulxla [e, f,3,3] ;

2

b 1.'13 b[23 bill (b[1] b[2] + 2 b[3])

4
6 4

b[2] ÷

2

b[2] (b[1] b[2] + 2 b[3])

24

3

b[l] b[2] bill b[2] + 2 b[3] (b[l] b[2] + 2 b[3])

2 2 12

Figure 3: The vector fields and the _m map.

Flow [(0,0,0), (l+t+t'2+t'3) • [1] + (Sin [20t] )e [2] ,(t,. 1}]

(0. 105358, 0.0708073, -0.0045167)

L3/, Table [b[i] ->_ [ [i] ], {i, 3}]

{0.0000895593, 0.0708073, 0.00294345)

RungeKuttaHiD[Join[{l), (l+t+t'2+t'3)f [I] +(Sin[2Ot]) f [2]],
{t,x [1] ,x[2] ,x [3] }, {0,0,0,0},0.02,5]

{0.1, 0.0000842708, 0.0708076, 0.00294349)

Figure 4: Comparing the map :_m and a Runge Kutta flow.
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